

Low Carbon Asia Research Network (LoCARNet) 4th Annual Meeting International Conference of Low Carbon Asia Positive Action from Asia – Towards COP21 and Beyond 11-13 October 2015 DoubleTree Hotel, Johor Bahru, Malaysia

Designing Low Carbon and Climate Resilient Watershed Management through Multi-Stakeholder Process: Study Case in the Philippines

Damasa B. Magcale-Macandog^{1*}, Isao Endo², Satoshi Kojima², Brian A. Johnson², Milben A. Bragais¹, Paula Beatrice M. Macandog¹, Akio Onishi² and Henry Scheyvens² ¹Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines ²Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa, 240-0115, Japan *Corresponding author's email: dmmacandog@gmail.com

IGES/UPLB Pilot project: Study area

Rapid Land Conversion

$2007 \rightarrow 2014$

Portion of Sta. Rosa City experiencing conversion of **Rice fields** to **Subdivisions**

Drivers and impacts of land cover change

Weather-related disasters: Flooding

Santa Rosa, Philippines 2014

Consultation with local governments: Future development & land-use

Current Land Use (2014)

Future Land Use Plan (2025)*

*Future land use plan map based on the results of a participatory land use mapping session representatives from four local government units (LGUs)

FLOOD MODELLING

Generation of Basin Model using ArcGIS10 with HEC-GeoHMS and HEC-GeoRAS extensions

Generation of Rainfall-Runoff Curve using HEC-HMS:

Hydrologic Engineering Center - Hydrologic Modeling System

Generation of Flood Model using HEC-RAS : Hydrologic Engineering Center - River Analysis System

Generation of Basin Model using ArcGIS10 with HEC-GeoHMS and HEC-GeoRAS extensions

Curve Number (Runoff coefficient) Map: 2014

-Higher Curve Number values indicate higher stormwater runoff. Values are based or land use and soil type. Curve Numbers are used for flood hazard modeling.

Collection of precipitation and discharge data from DOST-Project NOAH

Rainfall intensity as of 02/25/15 09:30 AM

Generation of Rainfall-Runoff Curve using HEC-HMS : Hydrologic Engineering Center -Hydrologic Modeling System

Sample Results:

(should be calibrated)

Initial Run

Generation of Flood Model using HEC-RAS : Hydrologic Engineering Center - River Analysis System

Downstream DSM (2m) from LiDAR data

#5 *Visualization using RAS Mapper or ArcScene*

Change in C storage: 2014-2025

2014 Above-ground Biomass

2025 Above-ground Biomass

CO₂ emissions from LU change in Silang-Santa Rosa subwatershed

- Above-ground biomass (2014) = 173,189 tons C
- Above-ground biomass (2025) = **29,281 tons C**
- Change 2014 to 2025 = -143,908 tons C [-83%]
- CO₂ emissions = 143,908 x 3.67 = 528,142 tons
 CO₂

Reducing CO₂ emissions from LU change

Possible activities

- Reforestation along riverbanks
- Maintaining existing vegetation in new developments
- Preserving existing forest/agro-forest lands with high C storage
- Next step: Calculate CO₂ emissions for alternative land use development scenarios (i.e. with adaptation/mitigation actions
 taken).

Consultation meeting with LGUs: Climate Change measures

Possible measures for climate change mitigation (CCM) and adaptation (CCA) (example)

Category	Measures	C	C
		C M	C A
Improved land-use	Development control in high-risk areas		0
	Green space, urban greening	0	0
Flood-tolerant,	Strengthened building codes in high-risk areas		0
environment-	(e.g., embankment, high-floored housing)		
conscious building	Roof greening, green building	0	0
Ecosystem-based, integrated watershed management	Maintenance and improvement of watershed		
	protection function (flood alleviation, water		
	retention ability) of ecosystem		
	Development control in upriver areas		0
	Afforestation & reforestation	0	0
	Watercourse management (e.g., riverbank		0
	reinforcement, dredging, river cleaning)		
	Change in varieties and cultivation methods		0
	of agricultural products to prevent soil runoff		

Preliminary list of climate change measures by local governments

- Zoning/building ordinance
- River rehabilitation
- Information, Education, and communication (IEC)
- Run-off mitigation development
- Green space/building/urban agriculture
- Relocation of informal settlers
- Strict law enforcement

Capacity building & public awareness

- Training needs assessments on CCA, CCM, disaster preparedness and management
 - Develop survey/assessment instrument to determine the needs for training and other IEC; Conduct the TNA
- Development of campaign materials and training modules for CCA, CCM, disaster preparedness and management
 - Develop campaign materials and training modules for CCA, CCM, disaster preparedness and management
- Conduct of trainings and events
 - Organize trainings and events to increase awareness and preparedness

Inter-city cooperation

Memorandum of agreement (MOA) for cooperation Establishment of Council for Integrated Watershed Management December 2, 2014

Catalyzed by 5-year WWF

Institutional building: Strengthen IWMC

- Review MOA / legal documents and plans
- Identify gaps/needs
- Help establish/facilitate regular communication among local governments and with LLDA
- Help create workplan/action plan
- **Provide technical assistance** or connect with experts/institutions
- Share information, experience, and lessons learned with other local government with similar climate change problems in and beyond the Lake Laguna watersheds

Conclusion/key messages

- **Improving land-use planning** can be one of successful approaches for effectively addressing weather-related disasters such as floods, integrating climate change adaptation and mitigation measures.
- Land-use approach is a systematic process with multiple steps:
 1) Scenario development, 2) Risk assessment, 3) Climate change measure development, and 4) Climate-sensitive land-use planning.
- Targeting/managing river basin as a whole with inter-city cooperation will help address climate-related disasters (e.g., floods) downstream.
- Ecosystem-based, integrated watershed management can provide technically- and economically-feasible solutions and co-benefits to address conservation and climate disasters at the same time.

Key messages (2)

- Experiences and lessons learned from the Silang-Santa Rosa pilot will be shared with other Subwatersheds facing similar problems.
- **IGES/UPLB would like to continue to support** LGUs in the Philippines and beyond in cooperation with National Governments by:
 - Developing flood risk maps under future scenarios
 - Helping develop/refine measures
 - Strengthening capacity of Integrated Watershed Management Council
 - Proposing joint research
 - Explore further cooperation with institutions and
 - universities

THANK YOU VERY MUCH!